New Search

Item 1 of 1568 (back to results)
next Next
Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan
Journal of hydrology

Current search:

Natural Resources, Earth and Environmental Sciences: natural resource management
×
Research, Technology and Engineering: engineering
×

Select any link to see items in a related category.

more general categories    information about this item
Calendar Year 
Calendar Year
 Year (337475) 
 2010 (38932)
Geographical Locations 
Geographical Locations
 Asia (16685) 
 East Asia (10715) 
 Taiwan (717)
Natural Resources, Earth and Environmental Sciences 
Natural Resources, Earth and Environmental Sciences
 geology (23343) 
 geomorphology (10939) 
 landforms (9516) 
 coasts (1583)
 hydrology (18092) 
 water (12151) 
 groundwater (2536)
 water table (978) 
 high water table (79)
 natural resource management (11559) 
 water management (3752) 
 hydraulic structures (905) 
 wells (747)
Physical and Chemical Sciences 
Physical and Chemical Sciences
 chemical substances (129118) 
 elements (30672) 
 nonmetallic elements (20442) 
 arsenic (962)
 trace elements (7005) 
 arsenic (962)
Reference Types 
Reference Types
 Journal (337546)
Research, Technology and Engineering 
Research, Technology and Engineering
 engineering (9759) 
 manmade structures (4337) 
 hydraulic structures (905) 
 wells (747)
 geospatial science and technology (2769) 
 spatial data (611)
 mathematics and statistics (33406) 
 mathematical models (6495) 
 nonlinear models (896) 
 neural networks (701)
 statistics (23850) 
 statistical analysis (13399) 
 principal component analysis (1576)
 methodology (66114) 
 monitoring (4857)
 research (30526) 
 research methods (29174) 
 model validation (1195)
 support systems and models (27487) 
 models (27236) 
 mathematical models (6495) 
 nonlinear models (896) 
 neural networks (701)
Abstract of Article  Will be presented in next release
Date Last Accessed  Accessed January 20, 2015
Title of Article  Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan
Author(s) of Article  Will be identified in next release
Citation  Journal of hydrology 2010 v.388 no.1-2 pp. 65-76
Click to View  (Click to View)
Date of Publication  2010
Location of Article  http://pubag.nal.usda.gov/pubag/article.xhtml?id=435118
Name of Publication  Journal of hydrology
Publishing Company  Will be identified in next release
Accession Number  72235