New Search

Item 4 of 5 (back to results)
Previous previous next Next
Spatial Prediction of Ground Subsidence Susceptibility Using an Artificial Neural Network
Environmental management

Current search:

Natural Resources, Earth and Environmental Sciences: geology > mass movement > subsidence
×
Research, Technology and Engineering: information science
×

Select any link to see items in a related category.

more general categories    information about this item
Calendar Year 
Calendar Year
 Year (337475) 
 2012 (47541)
Economics, Business and Industry 
Economics, Business and Industry
 administrative management (9912) 
 planning (1372)
 economics (27895) 
 public economics (3343) 
 infrastructure (3032)
Geographical Locations 
Geographical Locations
 Asia (16685) 
 East Asia (10715) 
 South Korea (455)
Natural Resources, Earth and Environmental Sciences 
Natural Resources, Earth and Environmental Sciences
 geology (23343) 
 geomorphology (10939) 
 topography (1965)
 mass movement (179) 
 subsidence (80)
 phytoliths (773) 
 coal (390)
 rocks (1817) 
 sedimentary rocks (893) 
 coal (390)
 hydrology (18092) 
 water table (978)
 natural resource management (11559) 
 land management (3933) 
 land use (2957)
 natural resources (75944) 
 energy resources (3703) 
 fuels (2792) 
 fossil fuels (1056) 
 coal (390)
 mineral resources (1067) 
 fossil fuels (1056) 
 coal (390)
Reference Types 
Reference Types
 Journal (337546)
Research, Technology and Engineering 
Research, Technology and Engineering
 geospatial science and technology (2769) 
 spatial data (611)
 information science (2700) 
 information technology (2074) 
 databases (1723)
 mathematics and statistics (33406) 
 algorithms (1326)
 prediction (5471)
 research (30526) 
 research methods (29174) 
 data collection (1652)
 support systems and models (27487) 
 models (27236)
 technology (49139) 
 transportation (1657)
 information technology (2074) 
 databases (1723)
Abstract of Article  Will be presented in next release
Date Last Accessed  Accessed January 20, 2015
Title of Article  Spatial Prediction of Ground Subsidence Susceptibility Using an Artificial Neural Network
Author(s) of Article  Will be identified in next release
Citation  Environmental management 2012 v.49 no.2 pp. 347-358
Click to View  (Click to View)
Date of Publication  2012
Location of Article  http://pubag.nal.usda.gov/pubag/article.xhtml?id=574780
Name of Publication  Environmental management
Publishing Company  Will be identified in next release
Accession Number  175116